Saltar al contenido principal
InicioPython

Feature Engineering for NLP in Python

Learn techniques to extract useful information from text and process them into a format suitable for machine learning.

Comienza El Curso Gratis
4 horas15 vídeos52 ejercicios25.042 aprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group

¿Entrenar a 2 o más personas?

Probar DataCamp for Business

Preferido por estudiantes en miles de empresas


Descripción del curso

In this course, you will learn techniques that will allow you to extract useful information from text and process them into a format suitable for applying ML models. More specifically, you will learn about POS tagging, named entity recognition, readability scores, the n-gram and tf-idf models, and how to implement them using scikit-learn and spaCy. You will also learn to compute how similar two documents are to each other. In the process, you will predict the sentiment of movie reviews and build movie and Ted Talk recommenders. Following the course, you will be able to engineer critical features out of any text and solve some of the most challenging problems in data science!
Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.
DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.

En las siguientes pistas

Científico de machine learning en Python

Ir a la pista

Procesamiento del Lenguaje Natural en Python

Ir a la pista
  1. 1

    Basic features and readability scores

    Gratuito

    Learn to compute basic features such as number of words, number of characters, average word length and number of special characters (such as Twitter hashtags and mentions). You will also learn to compute readability scores and determine the amount of education required to comprehend a piece of text.

    Reproducir Capítulo Ahora
    Introduction to NLP feature engineering
    50 xp
    Data format for ML algorithms
    50 xp
    One-hot encoding
    100 xp
    Basic feature extraction
    50 xp
    Character count of Russian tweets
    100 xp
    Word count of TED talks
    100 xp
    Hashtags and mentions in Russian tweets
    100 xp
    Readability tests
    50 xp
    Readability of 'The Myth of Sisyphus'
    100 xp
    Readability of various publications
    100 xp
  2. 2

    Text preprocessing, POS tagging and NER

    In this chapter, you will learn about tokenization and lemmatization. You will then learn how to perform text cleaning, part-of-speech tagging, and named entity recognition using the spaCy library. Upon mastering these concepts, you will proceed to make the Gettysburg address machine-friendly, analyze noun usage in fake news, and identify people mentioned in a TechCrunch article.

    Reproducir Capítulo Ahora
Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.

En las siguientes pistas

Científico de machine learning en Python

Ir a la pista

Procesamiento del Lenguaje Natural en Python

Ir a la pista

conjuntos de datos

Russian Troll TweetsMovie Overviews and TaglinesPreprocessed Movie ReviewsTED Talk TranscriptsReal and Fake News Headlines

colaboradores

Collaborator's avatar
Adrián Soto
Collaborator's avatar
Hillary Green-Lerman
Rounak Banik HeadshotRounak Banik

Data Scientist at Fractal Analytics

Ver Más

¿Qué tienen que decir otros alumnos?

¡Únete a 15 millones de estudiantes y empieza Feature Engineering for NLP in Python hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.