Saltar al contenido principal
InicioR

Foundations of Inference in R

Learn how to draw conclusions about a population from a sample of data via a process known as statistical inference.

Comienza El Curso Gratis
4 horas17 vídeos58 ejercicios35.261 aprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group

¿Entrenar a 2 o más personas?

Probar DataCamp for Business

Preferido por estudiantes en miles de empresas


Descripción del curso

One of the foundational aspects of statistical analysis is inference, or the process of drawing conclusions about a larger population from a sample of data. Although counter intuitive, the standard practice is to attempt to disprove a research claim that is not of interest. For example, to show that one medical treatment is better than another, we can assume that the two treatments lead to equal survival rates only to then be disproved by the data. Additionally, we introduce the idea of a p-value, or the degree of disagreement between the data and the hypothesis. We also dive into confidence intervals, which measure the magnitude of the effect of interest (e.g. how much better one treatment is than another).
Empresas

Group¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.
DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.

En las siguientes pistas

Inferencia estadística in R

Ir a la pista

Estadístico in R

Ir a la pista
  1. 1

    Introduction to ideas of inference

    Gratuito

    In this chapter, you will investigate how repeated samples taken from a population can vary. It is the variability in samples that allow you to make claims about the population of interest. It is important to remember that the research claims of interest focus on the population while the information available comes only from the sample data.

    Reproducir Capítulo Ahora
    Welcome to the course!
    50 xp
    Hypotheses (1)
    50 xp
    Hypotheses (2)
    50 xp
    Randomized distributions
    50 xp
    Working with the NHANES data
    100 xp
    Calculating statistic of interest
    100 xp
    Randomized data under null model of independence
    100 xp
    Randomized statistics and dotplot
    100 xp
    Randomization density
    100 xp
    Using the randomization distribution
    50 xp
    Do the data come from the population?
    100 xp
    What can you conclude?
    50 xp
    Study conclusions
    50 xp
  2. 3

    Hypothesis testing errors: opportunity cost

    You will continue learning about hypothesis testing with a new example and the same structure of randomization tests. In this chapter, however, the focus will be on different errors (type I and type II), how they are made, when one is worse than another, and how things like sample size and effect size impact the error rates.

    Reproducir Capítulo Ahora
  3. 4

    Confidence intervals

    As a complement to hypothesis testing, confidence intervals allow you to estimate a population parameter. Recall that your interest is always in some characteristic of the population, but you only have incomplete information to estimate the parameter using sample data. Here, the parameter is the true proportion of successes in a population. Bootstrapping is used to estimate the variability needed to form the confidence interval.

    Reproducir Capítulo Ahora
Empresas

Group¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.

En las siguientes pistas

Inferencia estadística in R

Ir a la pista

Estadístico in R

Ir a la pista

conjuntos de datos

All pollsPolling dataBig discrimination datasetNew discrimination datasetSmall discrimination dataset

colaboradores

Collaborator's avatar
Nick Carchedi
Collaborator's avatar
Tom Jeon
Jo Hardin HeadshotJo Hardin

Professor at Pomona College

Ver Más

¿Qué tienen que decir otros alumnos?

¡Únete a 15 millones de estudiantes y empieza Foundations of Inference in R hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.