Saltar al contenido principal
InicioR

Handling Missing Data with Imputations in R

Diagnose, visualize and treat missing data with a range of imputation techniques with tips to improve your results.

Comienza El Curso Gratis
4 horas13 vídeos49 ejercicios5160 aprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group

¿Entrenar a 2 o más personas?

Probar DataCamp for Business

Preferido por estudiantes en miles de empresas


Descripción del curso

Missing data is everywhere. The process of filling in missing values is known as imputation, and knowing how to correctly fill in missing data is an essential skill if you want to produce accurate predictions and distinguish yourself from the crowd. In this course, you’ll learn how to use visualizations and statistical tests to recognize missing data patterns and how to impute data using a collection of statistical and machine learning models. You’ll also gain decision-making skills, helping you decide which imputation method fits best in a particular situation. Finally, you’ll learn to incorporate uncertainty from imputation into your inference and predictions, making them more robust and reliable.
Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.
DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.
  1. 1

    The Problem of Missing Data

    Gratuito

    In this chapter, you’ll find out why missing data can be a risk when analyzing a dataset. You’ll be introduced to the three missing data mechanisms and learn how to recognize them using statistical tests and visualization tools.

    Reproducir Capítulo Ahora
    Missing data: what can go wrong
    50 xp
    Linear regression with incomplete data
    100 xp
    Analyzing regression output
    50 xp
    Comparing models
    100 xp
    Missing data mechanisms
    50 xp
    Recognizing missing data mechanisms
    100 xp
    t-test for MAR: data preparation
    100 xp
    t-test for MAR: interpretation
    100 xp
    Visualizing missing data patterns
    50 xp
    Aggregation plot
    100 xp
    Spine plot
    100 xp
    Mosaic plot
    100 xp
  2. 2

    Donor-Based Imputation

    Get to know the taxonomy of imputation methods and learn three donor-based techniques: mean, hot-deck, and k-Nearest-Neighbors imputation. You’ll look under the hood to see how these methods work, before learning how to apply them to a real-world tropical weather dataset. Along the way, you’ll also learn useful tricks that you can use to make them work even better for your problems.

    Reproducir Capítulo Ahora
  3. 3

    Model-Based Imputation

    It’s time to learn how to use statistical and machine learning models, such as linear regression, logistic regression, and random forests, to impute missing data. In this chapter, you’ll look into how the models make their predictions and use this knowledge to draw the imputed values from conditional distributions. This is important as it ensures your imputations are more varied and plausible, making them more similar to the true data.

    Reproducir Capítulo Ahora
  4. 4

    Uncertainty from Imputation

    Imputed values are not set in stone. They are just estimates and estimates come with some uncertainty. In this final chapter, you’ll discover how bootstrapping and chained equation using the mice package can be used to incorporate imputation uncertainty into your models and analyses to make them more reliable and robust.

    Reproducir Capítulo Ahora
Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.

conjuntos de datos

Biopics datasetTropical Atmosphere Ocean dataset

colaboradores

Collaborator's avatar
Amy Peterson
Collaborator's avatar
Adel Nehme
Michał Oleszak HeadshotMichał Oleszak

Machine Learning Engineer

Ver Más

¿Qué tienen que decir otros alumnos?

¡Únete a 15 millones de estudiantes y empieza Handling Missing Data with Imputations in R hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.