Saltar al contenido principal
InicioPython

Introduction to Linear Modeling in Python

Explore the concepts and applications of linear models with python and build models to describe, predict, and extract insight from data patterns.

Comienza El Curso Gratis
4 horas16 vídeos59 ejercicios23.836 aprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group

¿Entrenar a 2 o más personas?

Probar DataCamp for Business

Preferido por estudiantes en miles de empresas


Descripción del curso

One of the primary goals of any scientist is to find patterns in data and build models to describe, predict, and extract insight from those patterns. The most fundamental of these patterns is a linear relationship between two variables. This course provides an introduction to exploring, quantifying, and modeling linear relationships in data, by demonstrating techniques such as least-squares, linear regression, estimatation, and bootstrap resampling. Here you will apply the most powerful modeling tools in the python data science ecosystem, including scipy, statsmodels, and scikit-learn, to build and evaluate linear models. By exploring the concepts and applications of linear models with python, this course serves as both a practical introduction to modeling, and as a foundation for learning more advanced modeling techniques and tools in statistics and machine learning.
Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.
DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.
  1. 1

    Exploring Linear Trends

    Gratuito

    We start the course with an initial exploration of linear relationships, including some motivating examples of how linear models are used, and demonstrations of data visualization methods from matplotlib. We then use descriptive statistics to quantify the shape of our data and use correlation to quantify the strength of linear relationships between two variables.

    Reproducir Capítulo Ahora
    Introduction to Modeling Data
    50 xp
    Reasons for Modeling: Interpolation
    100 xp
    Reasons for Modeling: Extrapolation
    100 xp
    Reasons for Modeling: Estimating Relationships
    100 xp
    Visualizing Linear Relationships
    50 xp
    Plotting the Data
    100 xp
    Plotting the Model on the Data
    100 xp
    Visually Estimating the Slope & Intercept
    100 xp
    Quantifying Linear Relationships
    50 xp
    Mean, Deviation, & Standard Deviation
    100 xp
    Covariance vs Correlation
    100 xp
    Correlation Strength
    100 xp
  2. 2

    Building Linear Models

    Here we look at the parts that go into building a linear model. Using the concept of a Taylor Series, we focus on the parameters slope and intercept, how they define the model, and how to interpret the them in several applied contexts. We apply a variety of python modules to find the model that best fits the data, by computing the optimal values of slope and intercept, using least-squares, numpy, statsmodels, and scikit-learn.

    Reproducir Capítulo Ahora
  3. 3

    Making Model Predictions

    Next we will apply models to real data and make predictions. We will explore some of the most common pit-falls and limitations of predictions, and we evaluate and compare models by quantifying and contrasting several measures of goodness-of-fit, including RMSE and R-squared.

    Reproducir Capítulo Ahora
Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.

conjuntos de datos

Femur length versus body heightDistance hiked versus hike durationGalaxy distances versus recession velocitiesSea surface height versus yearMass versus volume of solution

colaboradores

Collaborator's avatar
Nick Solomon
Collaborator's avatar
Adrián Soto
Jason Vestuto HeadshotJason Vestuto

Data Scientist, University of Texas at Austin

Ver Más

¿Qué tienen que decir otros alumnos?

¡Únete a 15 millones de estudiantes y empieza Introduction to Linear Modeling in Python hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.