Saltar al contenido principal
InicioPython

Introduction to Optimization in Python

Learn to solve real-world optimization problems using Python's SciPy and PuLP, covering everything from basic to constrained and complex optimization.

Comienza El Curso Gratis
4 horas13 vídeos42 ejercicios2016 aprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group

¿Entrenar a 2 o más personas?

Probar DataCamp for Business

Preferido por estudiantes en miles de empresas


Descripción del curso

Optimization problems are ubiquitous in engineering, sciences, and the social sciences. This course will take you from zero optimization knowledge to a hero optimizer. You will use mathematical modeling to translate real-world problems into mathematical ones and solve them in Python using the SciPy and PuLP packages.

Apply Calculus to Unconstrained Optimization Problems with SymPy

You will start by learning the definition of an optimization problem and its use cases. You will use SymPy to apply calculus to yield analytical solutions to unconstrained optimization. You will not have to calculate derivatives or solve equations; SymPy works seamlessly! Similarly, you will use SciPy to get numerical solutions.

Tackle Complex Problems Head-On

Next, you will learn to solve linear programming problems in SciPy and PuLP. To capture real-world complexity, you will see how to apply PuLP and SciPy to solve constrained convex optimization and mixed integer optimization. By the end of this course, you will have solved real-world optimization problems, including manufacturing, profit and budgeting, resource allocation, and more.
Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.
DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.
  1. 1

    Introduction to Optimization

    Gratuito

    This chapter introduces optimization, its core components, and its wide applications across industries and domains. It presents a quick, exhaustive search method for solving an optimization problem. It provides a mathematical primer for the concepts required for this course.

    Reproducir Capítulo Ahora
    Introduction to mathematical optimization
    50 xp
    Understanding mathematical optimization
    50 xp
    Applying an objective function
    100 xp
    Exhaustive search method
    100 xp
    Univariate optimization
    50 xp
    Finding the derivative
    100 xp
    Find the second derivative
    100 xp
    Multivariate optimization
    50 xp
    Partial derivatives with SymPy
    100 xp
    Limitations of differentiation
    100 xp
  2. 2

    Unconstrained and Linear Constrained Optimization

    This chapter covers solving unconstrained and constrained optimization problems with differential calculus and SymPy, identifying potential pitfalls. SciPy is also introduced to solve unconstrained optimization problems, in single and multiple dimensions, numerically, with a few lines of code. The chapter goes on to solve linear programming in SciPy and PuLP.

    Reproducir Capítulo Ahora
  3. 3

    Non-linear Constrained Optimization

    Gratuito

    This chapter introduces convex-constrained optimization problems with different constraints and looks at mixed integer linear programming problems, essentially linear programming problems where at least one variable is an integer.

    Reproducir Capítulo Ahora
  4. 4

    Robust Optimization Techniques

    This chapter covers finding the global optimum when multiple good solutions exist. We will conduct sensitivity analysis and learn linearization techniques that reduce non-linear problems to easily solvable ones with SciPy or PuLP. In terms of applications, we will solve an HR allocation with training costs problem and capital budgeting with dependent projects.

    Reproducir Capítulo Ahora
Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.

colaboradores

Collaborator's avatar
Maham Khan
Collaborator's avatar
Joe Franklin
Collaborator's avatar
Constantinos Kalfarentzos

Audio grabado por

Jasmin Ludolf's avatar
Jasmin Ludolf

requisitos previos

Introduction to NumPy
James Chapman HeadshotJames Chapman

Curriculum Manager, DataCamp

Ver Más

¿Qué tienen que decir otros alumnos?

¡Únete a 15 millones de estudiantes y empieza Introduction to Optimization in Python hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.