Saltar al contenido principal
InicioPython

Reinforcement Learning from Human Feedback (RLHF)

Learn how to make GenAI models truly reflect human values while gaining hands-on experience with advanced LLMs.

Comienza El Curso Gratis
4 horas13 vídeos38 ejercicios

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group

¿Entrenar a 2 o más personas?

Probar DataCamp for Business

Preferido por estudiantes en miles de empresas


Descripción del curso

Combine the efficiency of Generative AI with the understanding of human expertise in this course on Reinforcement Learning from Human Feedback. You’ll learn how to make GenAI models truly reflect human values and preferences while getting hands-on experience with LLMs. You’ll also navigate the complexities of reward models and learn how to build upon LLMs to produce AI that not only learns but also adapts to real-world scenarios.
Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.
DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.
  1. 1

    Foundational Concepts

    Gratuito

    This chapter introduces the basics of Reinforcement Learning with Human Feedback (RLHF), a technique that uses human input to help AI models learn more effectively. Get started with RLHF by understanding how it differs from traditional reinforcement learning and why human feedback can enhance AI performance in various domains.

    Reproducir Capítulo Ahora
    Introduction to RLHF
    50 xp
    Text generation with RLHF
    100 xp
    Classifying generated text for RLHF
    100 xp
    RL vs. RLHF
    50 xp
    Exploring pre-trained LLMs
    50 xp
    Tokenize a text dataset
    100 xp
    Fine-tuning for review classification
    100 xp
    Preparing data for RLHF
    50 xp
    Preparing the preference dataset
    100 xp
    Extracting prompts
    50 xp
  2. 2

    Gathering Human Feedback

    Discover how to set up systems for gathering human feedback in this Chapter. Learn best practices for collecting high-quality data, from pairwise comparisons to uncertainty sampling, and explore strategies for enhancing your data collection.

    Reproducir Capítulo Ahora
  3. 3

    Tuning Models with Human Feedback

    In this Chapter, you'll get into the core of Reinforcement Learning from Human Feedback training. This includes exploring fine-tuning with PPO, techniques to train efficiently, and handling potential divergences from your metrics' objectives.

    Reproducir Capítulo Ahora
  4. 4

    Model Evaluation

    Explore key techniques for assessing and improving model performance in this last Chapter of Reinforcement Learning from Human Feedback (RLHF): from fine-tuning metrics to incorporating diverse feedback sources, you'll be provided with a comprehensive toolkit to refine your models effectively.

    Reproducir Capítulo Ahora
Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.

colaboradores

Collaborator's avatar
Francesca Donadoni

requisitos previos

Deep Reinforcement Learning in Python
Mina Parham HeadshotMina Parham

AI Engineer, Chubb

Ver Más

¿Qué tienen que decir otros alumnos?

¡Únete a 15 millones de estudiantes y empieza Reinforcement Learning from Human Feedback (RLHF) hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.