Saltar al contenido principal
InicioPython

Retrieval Augmented Generation (RAG) with LangChain

Learn cutting-edge methods for integrating external data with LLMs using Retrieval Augmented Generation (RAG) with LangChain.

Comienza El Curso Gratis
3 horas12 vídeos38 ejercicios

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group

¿Entrenar a 2 o más personas?

Probar DataCamp for Business

Preferido por estudiantes en miles de empresas


Descripción del curso

Build RAG Systems with LangChain

Retrieval Augmented Generation (RAG) is a technique used to overcome one of the main limitations of large language models (LLMs): their limited knowledge. RAG systems integrate external data from a variety of sources into LLMs. This process of connecting multiple different systems is usually tedious, but LangChain makes this a breeze!

Learn State-of-the-Art Splitting and Retrieval Methods

Level-up your RAG architecture! You'll learn how to load and split code files, including Python and Markdown files to ensure that splits are "aware" of code syntax. You'll split your documents using tokens instead of characters to ensure that your retrieved documents stay within your model's context window. Discover how semantic splitting can help retain context by detecting when the subject in the text shifts and splitting at these points. Finally, learn to evaluate your RAG architecture robustly with LangSmith and Ragas.

Discover the Graph RAG Architecture

Flip your RAG architecture on its head and discover how graph-based, rather than vector-based RAG systems can improve your system's understanding of the entities and relationships in your documents. You'll learn how to convert unstructured text data into graphs using LLMs to do the translation! Then, you'll store these graph documents in a Neo4j graph database and integrate it into a wider RAG system to complete the application.
Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.
DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.
  1. 1

    Building RAG Applications with LangChain

    Gratuito

    Discover how to integrate external data sources into chat models with LangChain. Learn how to load, split, embed, store, and retrieve data for use in LLM applications.

    Reproducir Capítulo Ahora
    Loading Documents for RAG with LangChain
    50 xp
    Loading PDF files for RAG
    100 xp
    Loading HTML files for RAG
    100 xp
    Text splitting, embeddings, and vector storage
    50 xp
    Getting started with text splitting
    100 xp
    Recursively splitting documents
    100 xp
    Embedding and storing documents
    100 xp
    Building an LCEL retrieval chain
    50 xp
    Creating the retrieval prompt
    100 xp
    Building the retrieval chain
    100 xp
  2. 2

    Improving the RAG Architecture

    Discover state-of-the-art techniques for loading, splitting, and retrieving documents, including loading Python files, splitting semantically, and using MRR and self-query retrieval methods. Learn to evaluate your RAG architecture using robust metrics and frameworks.

    Reproducir Capítulo Ahora
Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.

conjuntos de datos

RAG Academic Paper PDFDataCamp Blog HTMLLangChain README MarkdownChatbot Python FileRAG Workflow Python File

colaboradores

Collaborator's avatar
James Chapman
Meri Nova HeadshotMeri Nova

Machine Learning Engineer

Ver Más

¿Qué tienen que decir otros alumnos?

¡Únete a 15 millones de estudiantes y empieza Retrieval Augmented Generation (RAG) with LangChain hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.