Saltar al contenido principal
InicioPython

Survival Analysis in Python

Use survival analysis to work with time-to-event data and predict survival time.

Comienza El Curso Gratis
4 horas16 vídeos48 ejercicios4599 aprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group

¿Entrenar a 2 o más personas?

Probar DataCamp for Business

Preferido por estudiantes en miles de empresas


Descripción del curso

How long does it take for flu symptoms to show after exposure? And what if you don't know when people caught the virus? Do salary and work-life balance influence the speed of employee turnover? Lots of real-life challenges require survival analysis to robustly estimate the time until an event to help us draw insights from time-to-event distributions. This course introduces you to the basic concepts of survival analysis. Through hands-on practice, you’ll learn how to compute, visualize, interpret, and compare survival curves using Kaplan-Meier, Weibull, and Cox PH models. By the end of this course, you’ll be able to model survival distributions, build pretty plots of survival curves, and even predict survival durations.
Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.
DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.
  1. 1

    Introduction to Survival Analysis

    Gratuito

    What problems does survival analysis solve, and what is censorship? You’ll answer these questions as you explore survival analysis data, build survival curves, and make basic estimations of survival time.

    Reproducir Capítulo Ahora
    What is survival analysis?
    50 xp
    What problems does survival analysis solve?
    100 xp
    Choose the right data for survival analysis
    50 xp
    Why use survival analysis?
    50 xp
    Identify the censorship type
    50 xp
    Preprocess censored data
    100 xp
    First look at censored data
    100 xp
    Your first survival curve!
    50 xp
    Draw a survival curve
    100 xp
    Long live democracy!
    100 xp
  2. 2

    Survival Curve Estimation

    In this chapter, you’ll learn how the Kaplan-Meier model works and how to fit, visualize, and interpret it. You’ll then apply this model to explore how categorical variables affect survival and learn how to supplement your analysis using hypothesis testing methods like the log-rank test.

    Reproducir Capítulo Ahora
  3. 3

    The Weibull Model

    Discover how to model time-to-event data with parametric models. Learn how to use the Weibull model and the Weibull AFT model and what different purposes they serve. Use survival regression to make inferences about how covariates affect the survival function and learn how to select the best survival model for your data.

    Reproducir Capítulo Ahora
  4. 4

    The Cox PH Model

    Another chapter, another model! In this final chapter, you'll learn about the proportional hazards assumption and the role it plays in fitting and interpreting the Cox Proportional Hazards model. You’ll also learn how to predict new subjects' survival times using the Cox Proportional Hazards model.

    Reproducir Capítulo Ahora
Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.

conjuntos de datos

Echocardiogram dataEmployee attrition dataRegimes dataPrison recidivism data

colaboradores

Collaborator's avatar
Hadrien Lacroix
Collaborator's avatar
Maggie Matsui
Shae Wang HeadshotShae Wang

Senior Data Scientist at Ripple

Ver Más

¿Qué tienen que decir otros alumnos?

¡Únete a 15 millones de estudiantes y empieza Survival Analysis in Python hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.