Saltar al contenido principal
InicioR

Visualizing Geospatial Data in R

Learn to read, explore, and manipulate spatial data then use your skills to create informative maps using R.

Comienza El Curso Gratis
4 horas15 vídeos58 ejercicios27.946 aprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group

¿Entrenar a 2 o más personas?

Probar DataCamp for Business

Preferido por estudiantes en miles de empresas


Descripción del curso

Where should you buy a house to get the most value for your money? Your first step might be to make a map, but spatial analysis in R can be intimidating because of the complicated objects the data often live in.

This course will introduce you to spatial data by starting with objects you already know about, data frames, before introducing you to the special objects from the sp and raster packages used to represent spatial data for analysis in R. You'll learn to read, explore, and manipulate these objects with the big payoff of being able to use the tmap package to make maps.

By the end of the course you will have made maps of property sales in a small town, populations of the countries of the world, the distribution of people in the North East of the USA, and median income in the neighborhoods of New York City.

Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.
DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.
  1. 1

    Basic mapping with ggplot2 and ggmap

    Gratuito

    We'll dive in by displaying some spatial data -- property sales in a small US town -- using ggplot2 and we'll introduce you to the ggmap package as a quick way to add spatial context to your plots. We'll talk about what makes spatial data special and introduce you to the common types of spatial data we'll be working with throughout the course.

    Reproducir Capítulo Ahora
    Introduction to spatial data
    50 xp
    Grabbing a background map
    100 xp
    Putting it all together
    100 xp
    Insight through aesthetics
    100 xp
    Useful get_map() and ggmap() options
    50 xp
    Different maps
    100 xp
    Leveraging ggplot2's strengths
    100 xp
    A quick alternative
    100 xp
    Common types of spatial data
    50 xp
    Drawing polygons
    100 xp
    Choropleth map
    100 xp
    Raster data as a heatmap
    100 xp
  2. 2

    Point and polygon data

    You can get a long way with spatial data stored in data frames, but it makes life easier if they are stored in special spatial objects. In this chapter we'll introduce you to the spatial object classes provided by the sp package, particularly for point and polygon data. You'll learn how to explore and subset these objects by exploring a world map. The reward for learning about these object classes: we'll show you the package tmap which requires spatial objects as input, but makes creating maps really easy! You'll finish up by making a map of the world's population.

    Reproducir Capítulo Ahora
  3. 3

    Raster data and color

    While the sp package provides some classes for raster data, the raster package provides more useful classes. You'll be introduced to these classes and their advantages and then learn to display them. The examples continue with the theme of population from Chapter 2, but you'll look at some much finer detail datasets, both spatially and demographically. In the second half of the chapter you'll learn about color -- an essential part of any visual display, but especially important for maps.

    Reproducir Capítulo Ahora
  4. 4

    Data import and projections

    In this chapter you'll follow the creation of a visualization from raw spatial data files to adding a credit to a map. Along the way, you'll learn how to read spatial data into R, more about projections and coordinate reference systems, how to add additional data to a spatial object, and some tips for polishing your maps.

    Reproducir Capítulo Ahora
Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.

conjuntos de datos

House sales in Corvallis, 2015Ward sales in Corvallis, 2015Predicted house prices in CorvallisCountries (sp object)Countries (spdf object)Population around the Boston and NYC areasPopulation around the Boston and NYC areas (Broken into different age groups)Population around the Boston and NYC areas (Proportion by age)MigrationNeighborhood Tabulation AreasMedian Income dataNYC tracts dataWater bodies in NYCNYC Income data

colaboradores

Collaborator's avatar
Nick Carchedi
Collaborator's avatar
Tom Jeon
Collaborator's avatar
Sumedh Panchadhar
Charlotte Wickham HeadshotCharlotte Wickham

Assistant Professor at Oregon State University

Ver Más

¿Qué tienen que decir otros alumnos?

¡Únete a 15 millones de estudiantes y empieza Visualizing Geospatial Data in R hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.