Saltar al contenido principal
InicioPythonWorking with Categorical Data in Python

Working with Categorical Data in Python

Learn how to manipulate and visualize categorical data using pandas and seaborn.

Comience El Curso Gratis
4 Horas15 Videos52 Ejercicios
17.853 AprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group¿Entrenar a 2 o más personas?Pruebe DataCamp para empresas

Preferido por estudiantes en miles de empresas


Descripción del curso

Being able to understand, use, and summarize non-numerical data—such as a person’s blood type or marital status—is a vital component of being a data scientist. In this course, you’ll learn how to manipulate and visualize categorical data using pandas and seaborn. Through hands-on exercises, you’ll get to grips with pandas' categorical data type, including how to create, delete, and update categorical columns. You’ll also work with a wide range of datasets including the characteristics of adoptable dogs, Las Vegas trip reviews, and census data to develop your skills at working with categorical data.
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más
Pruebe DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.

En las siguientes pistas

Certificación disponible

Científico de datos asociado en Python

Ir a la pista
  1. 1

    Introduction to Categorical Data

    Gratuito

    Almost every dataset contains categorical information—and often it’s an unexplored goldmine of information. In this chapter, you’ll learn how pandas handles categorical columns using the data type category. You’ll also discover how to group data by categories to unearth great summary statistics.

    Reproducir Capítulo Ahora
    Course introduction
    50 xp
    Categorical vs. numerical
    100 xp
    Exploring a target variable
    100 xp
    Ordinal categorical variables
    100 xp
    Categorical data in pandas
    50 xp
    Setting dtypes and saving memory
    100 xp
    Creating a categorical pandas Series
    100 xp
    Setting dtype when reading data
    100 xp
    Grouping data by category in pandas
    50 xp
    Create lots of groups
    50 xp
    Setting up a .groupby() statement
    100 xp
    Using pandas functions effectively
    100 xp
  2. 2

    Categorical pandas Series

    Now it’s time to learn how to set, add, and remove categories from a Series. You’ll also explore how to update, rename, collapse, and reorder categories, before applying your new skills to clean and access other data within your DataFrame.

    Reproducir Capítulo Ahora
  3. 3

    Visualizing Categorical Data

    In this chapter, you’ll use the seaborn Python library to create informative visualizations using categorical data—including categorical plots (cat-plot), box plots, bar plots, point plots, and count plots. You’ll then learn how to visualize categorical columns and split data across categorical columns to visualize summary statistics of numerical columns.

    Reproducir Capítulo Ahora
  4. 4

    Pitfalls and Encoding

    Lastly, you’ll learn how to overcome the common pitfalls of using categorical data. You’ll also grow your data encoding skills as you are introduced to label encoding and one-hot encoding—perfect for helping you prepare your data for use in machine learning algorithms.

    Reproducir Capítulo Ahora
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más

En las siguientes pistas

Certificación disponible

Científico de datos asociado en Python

Ir a la pista

Sets De Datos

Adult Census IncomeAdoptable DogsTripadvisor ReviewsUsed Cars

Colaboradores

Collaborator's avatar
Amy Peterson
Collaborator's avatar
Justin Saddlemyer
Kasey Jones HeadshotKasey Jones

Research Data Scientist

Ver Mas

¿Qué tienen que decir otros alumnos?

¡Únete a 14 millones de estudiantes y empieza Working with Categorical Data in Python hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.