Saltar al contenido principal

Complete los detalles para desbloquear el seminario web

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.

Altavoces

Más información

¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más
Pruebe DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.

Scaling Data Quality in the Age of Generative AI

July 2024
Compartir

Generative AI's transformative power underscores the critical need for high-quality data. In this session, Barr Moses, CEO of Monte Carlo Data, Prukalpa Sankar, Cofounder at Atlan, and George Fraser, CEO at Fivetran, will discuss the nuances of scaling data quality for generative AI applications, highlighting the unique challenges and considerations that come into play. Throughout the session, they will share best practices for data and AI leaders to navigate these challenges, ensuring that governance remains a focal point even amid the AI hype cycle.

Summary

In the era of generative AI, the need for maintaining top-notch data quality is highly emphasized. With AI and machine learning becoming essential for organizations, the challenge of assuring data reliability is a primary concern. Experts Bar Moses, Prakalpa Sankar, and George Frazier explore the complex nature of data quality, discussing its inherent challenges and the changing environment. As trust in data becomes critical, the conversation points to the shift from traditional data management to more advanced systems that tackle emerging challenges. Despite technological progress, data quality remains a constant issue, with organizations dealing with the pressures of delivering reliable generative AI products. The discussion also highlights the cultural aspects of data quality, the importance of teamwork, and the need for sturdy frameworks to enhance data trust. Ensuring data quality is not solely a technical challenge but also a cultural one, requiring alignment across teams and the adoption of new methodologies to handle evolving data issues.

Key Takeaways:

  • Data quality is vital in the era of generative AI, with organizations under pressure to deliver trustworthy products.
  • Trust in data is as important as the data itself; issues often stem from cultural misunderstandings and technical failures.
  • Generative AI requires high-quality, proprietary data for competitive differentiation.
  • Teamwork between data producers and consumers is essential to close trust gaps.
  • The environment of data quality is changing, with new challenges requiring innovative solutions.

Deep Dives

The Changing Environment of Data Quality

Data quality has always ...
Leer Mas

been a challenge in the industry, but the advent of generative AI has raised the stakes. As Bar Moses noted, "The goalpost on data quality is shifting every year." Organizations face increasing pressure from the C-suite and market to produce generative AI products, yet many data leaders feel their data isn't ready. This disconnect highlights the need for a new approach in how data is managed. While technological progress has improved data processing and storage, data management practices have not kept up. As a result, many organizations still rely on manual approaches to data quality. The focus is now on moving beyond detection to understanding and resolving these issues at their root, which often involves complex systems and multi-team collaboration.

Trust as a Key Component of Data Quality

Prakalpa Sankar stressed the importance of trust in data quality, arguing that trust breaks not when something goes wrong, but when stakeholders learn about issues from someone else. A sturdy trust framework is vital for maintaining data quality, especially in fast-paced, real-time ecosystems where things can quickly go wrong. Building this trust involves creating awareness of data issues before they impact users, thus preventing the erosion of stakeholder confidence. The solution is not to prevent errors entirely but to manage them efficiently and transparently, ensuring that data consumers can rely on the information they receive.

Cultural and Teamwork Challenges in Data Quality

The cultural aspect of data quality cannot be overlooked. As organizations become more data-driven, aligning the objectives of data producers and consumers becomes necessary. George Frazier highlighted this by discussing the teamwork needed between business and data teams to tackle data quality issues. A lack of shared understanding and context can lead to mistrust and inefficiencies. Establishing a culture that promotes communication and aligns on data quality standards is essential. This involves setting clear expectations and metrics, such as SLAs, to ensure that data is timely and reliable, ultimately driving better business outcomes.

Generative AI and Data Quality: New Considerations

Generative AI introduces new considerations to data quality. As organizations strive to leverage AI, the need for high-quality proprietary data becomes clear. Bar Moses pointed out that the competitive advantage lies in the proprietary data companies can provide to generative AI models. This requires careful attention to data quality and governance, ensuring that the data fed into AI systems is trustworthy and accurate. The conversation around data quality in AI is just beginning, and as organizations experiment with AI applications, they must prioritize data integrity to ensure meaningful and reliable outcomes.


Relacionado

webinar

Laying the Foundations: Data Quality in the Age of AI

Join Susan Walsh and Scott Taylor as they walk us through how data leaders can make meaningful gains on their data quality initiatives, and the nuances of scaling a data quality initiative with AI in mind. 

webinar

Scaling Data & AI Literacy with a Persona-Driven Framework

In this session, three experts walk you through the steps of creating a successful data training program.

webinar

Scaling Data & AI Literacy with a Persona-Driven Framework

In this session, three experts walk you through the steps of creating a successful data training program.

webinar

Scaling Enterprise Value with AI: How to Prioritize ChatGPT Use Cases

Learn to navigate privacy and security concerns, the ethical and compliance considerations, and the human factors to safely incorporate generative AI in your organization.

webinar

Demystifying AI: Unpacking the Generative AI Landscape

Join experts from leading venture capital firms to discover the latest business and data science use cases of generative AI.

webinar

Building Trust in AI: Scaling Responsible AI Within Your Organization

Explore actionable strategies for embedding responsible AI principles across your organization's AI initiatives.

Hands-on learning experience

Companies using DataCamp achieve course completion rates 6X higher than traditional online course providers

Learn More

Upskill your teams in data science and analytics

Learn More

Join 5,000+ companies and 80% of the Fortune 1000 who use DataCamp to upskill their teams.

Don’t just take our word for it.