ChIP-seq with Bioconductor in R
Learn how to analyse and interpret ChIP-seq data with the help of Bioconductor using a human cancer dataset.
Comienza El Curso Gratis4 horas13 vídeos46 ejercicios4706 aprendicesDeclaración de cumplimiento
Crea Tu Cuenta Gratuita
o
Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.¿Entrenar a 2 o más personas?
Probar DataCamp for BusinessPreferido por estudiantes en miles de empresas
Descripción del curso
ChIP-seq analysis is an important branch of bioinformatics. It provides a window into the machinery that makes the cells in our bodies tick. Whether it is a brain cell helping you to read this web page or an immune cell patrolling your body for microorganisms that would make you sick, they all carry the same genome. What differentiates them are the genes that are active at any given time. Which genes these are is determined by a complex system of proteins that can activate and deactivate genes. When this regulatory machinery gets out of control, it can lead to cancer and other debilitating diseases. ChIP-seq analysis allows us to understand the function of regulatory proteins, how they can contribute to disease and can provide insights into how we may be able to intervene to prevent cells from spinning out of control. In this course, you will explore a real dataset while learning how to process and analyze ChIP-seq data in R.
¿Entrenar a 2 o más personas?
Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.En las siguientes pistas
Análisis de datos genómicos en R
Ir a la pista- 1
Introduction to ChIP-seq
GratuitoIntroduction to ChIP-seq experiments. Why are they interesting? What sort of phenomena can be studied with ChIP-seq and what can we learn from these experiments.
- 2
Back to Basics - Preparing ChIP-seq data
Now the ChIP-seq analysis begins in earnest. This chapter introduces Bioconductor tools to import and clean the data.
Importing data50 xpReading BAM files100 xpReading BED files100 xpTaking a closer look at peaks50 xpPlotting a region in detail100 xpAdding Annotations50 xpCleaning ChIP-seq data50 xpRemoving blacklisted regions100 xpFiltering reads100 xpCompare filtered data to raw reads50 xpAssessing enrichment50 xpComputing coverage100 xpPeaks vs background100 xp - 3
Comparing ChIP-seq samples
This chapter introduces techniques to identify and visualise differences between ChIP-seq samples.
Introduction to differential binding50 xpDo these samples look the same to you?50 xpClustering samples100 xpVisualising differences in protein binding100 xpTesting for differential binding50 xpLoading Read Counts50 xpSetting-up the model100 xpFitting the model100 xpRevisiting PCA and Heat map100 xpA closer look at differential binding50 xpMA plot100 xpVolcano plot100 xpSummarising differences in protein binding100 xp - 4
From Peaks to Genes to Function
Being able to identify differential binding between groups of samples is great, but what does it mean? This chapter discusses strategies to interpret differential binding results to go from peak calls to biologically meaningful insights.
Interpreting ChIP-seq peaks50 xpConsolidating peaks100 xpUsing Annotations100 xpAnnotating peaks100 xpWhich peaks are different?100 xpInterpreting Gene lists50 xpAssociating peaks with genes100 xpFinding common themes100 xpUnderstanding the impact on pathways100 xpA closer look at pathways100 xpAdvanced ChIP-seq analyses50 xp
¿Entrenar a 2 o más personas?
Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.En las siguientes pistas
Análisis de datos genómicos en R
Ir a la pistacolaboradores
Peter Humburg
Ver MásStatistician
¿Qué tienen que decir otros alumnos?
¡Únete a 15 millones de estudiantes y empieza ChIP-seq with Bioconductor in R hoy mismo!
Crea Tu Cuenta Gratuita
o
Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.