Saltar al contenido principal
InicioR

Hyperparameter Tuning in R

Learn how to tune your model's hyperparameters to get the best predictive results.

Comienza El Curso Gratis
4 horas14 vídeos47 ejercicios7094 aprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group

¿Entrenar a 2 o más personas?

Probar DataCamp for Business

Preferido por estudiantes en miles de empresas


Descripción del curso

For many machine learning problems, simply running a model out-of-the-box and getting a prediction is not enough; you want the best model with the most accurate prediction. One way to perfect your model is with hyperparameter tuning, which means optimizing the settings for that specific model. In this course, you will work with the caret, mlr and h2o packages to find the optimal combination of hyperparameters in an efficient manner using grid search, random search, adaptive resampling and automatic machine learning (AutoML). Furthermore, you will work with different datasets and tune different supervised learning models, such as random forests, gradient boosting machines, support vector machines, and even neural nets. Get ready to tune!
Empresas

Group¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.
DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.

En las siguientes pistas

Científico de machine learning in R

Ir a la pista

Aprendizaje automático supervisado en R

Ir a la pista
  1. 1

    Introduction to hyperparameters

    Gratuito

    Why do we use the strange word "hyperparameter"? What makes it hyper? Here, you will understand what model parameters are, and why they are different from hyperparameters in machine learning. You will then see why we would want to tune them and how the default setting of caret automatically includes hyperparameter tuning.

    Reproducir Capítulo Ahora
    Parameters vs hyperparameters
    50 xp
    Model parameters vs. hyperparameters
    100 xp
    Hyperparameters in linear models
    50 xp
    What are the coefficients?
    100 xp
    Recap of machine learning basics
    50 xp
    Machine learning with caret
    100 xp
    Resampling schemes
    50 xp
    Hyperparameter tuning in caret
    50 xp
    Hyperparameters in Stochastic Gradient Boosting
    50 xp
    Changing the number of hyperparameters to tune
    100 xp
    Tune hyperparameters manually
    100 xp
  2. 2

    Hyperparameter tuning with caret

    In this chapter, you will learn how to tune hyperparameters with a Cartesian grid. Then, you will implement faster and more efficient approaches. You will use Random Search and adaptive resampling to tune the parameter grid, in a way that concentrates on values in the neighborhood of the optimal settings.

    Reproducir Capítulo Ahora
  3. 3

    Hyperparameter tuning with mlr

    Here, you will use another package for machine learning that has very convenient hyperparameter tuning functions. You will define a Cartesian grid or perform Random Search, as well as advanced techniques. You will also learn different ways to plot and evaluate models with different hyperparameters.

    Reproducir Capítulo Ahora
  4. 4

    Hyperparameter tuning with h2o

    In this final chapter, you will use h2o, another package for machine learning with very convenient hyperparameter tuning functions. You will use it to train different models and define a Cartesian grid. Then, You will implement a Random Search use stopping criteria. Finally, you will learn AutoML, an h2o interface which allows for very fast and convenient model and hyperparameter tuning with just one function.

    Reproducir Capítulo Ahora
Empresas

Group¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.

En las siguientes pistas

Científico de machine learning in R

Ir a la pista

Aprendizaje automático supervisado en R

Ir a la pista

conjuntos de datos

Bc test dataBc train dataBreast cancer dataBreast cancer data origDatasets descriptionsKnowledge dataKnowledge origKnowledge test dataKnowledge train dataSeeds dataSeeds datasetSeeds test dataSeeds train dataVoters dataVoters origVoters test dataVoters train data

colaboradores

Collaborator's avatar
Chester Ismay
Collaborator's avatar
Hadrien Lacroix
Shirin  Elsinghorst (formerly Glander) HeadshotShirin Elsinghorst (formerly Glander)

Data Scientist @ codecentric

Ver Más

¿Qué tienen que decir otros alumnos?

¡Únete a 15 millones de estudiantes y empieza Hyperparameter Tuning in R hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.