Saltar al contenido principal
InicioR

Support Vector Machines in R

This course will introduce the support vector machine (SVM) using an intuitive, visual approach.

Comienza El Curso Gratis
4 horas13 vídeos47 ejercicios10.201 aprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group

¿Entrenar a 2 o más personas?

Probar DataCamp for Business

Preferido por estudiantes en miles de empresas


Descripción del curso

This course will introduce a powerful classifier, the support vector machine (SVM) using an intuitive, visual approach. Support Vector Machines in R will help students develop an understanding of the SVM model as a classifier and gain practical experience using R’s libsvm implementation from the e1071 package. Along the way, students will gain an intuitive understanding of important concepts, such as hard and soft margins, the kernel trick, different types of kernels, and how to tune SVM parameters. Get ready to classify data with this impressive model.
Empresas

Group¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.
DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.

En las siguientes pistas

Científico de machine learning in R

Ir a la pista

Aprendizaje automático supervisado en R

Ir a la pista
  1. 1

    Introduction

    Gratuito

    This chapter introduces some key concepts of support vector machines through a simple 1-dimensional example. Students are also walked through the creation of a linearly separable dataset that is used in the subsequent chapter.

    Reproducir Capítulo Ahora
    Sugar content of soft drinks
    50 xp
    Visualizing a sugar content dataset
    100 xp
    Identifying decision boundaries
    50 xp
    Find the maximal margin separator
    100 xp
    Visualize the maximal margin separator
    100 xp
    Generating a linearly separable dataset
    50 xp
    Generate a 2d uniformly distributed dataset.
    100 xp
    Create a decision boundary
    100 xp
    Introduce a margin in the dataset
    100 xp
  2. 2

    Support Vector Classifiers - Linear Kernels

    Introduces students to the basic concepts of support vector machines by applying the svm algorithm to a dataset that is linearly separable. Key concepts are illustrated through ggplot visualisations that are built from the outputs of the algorithm and the role of the cost parameter is highlighted via a simple example. The chapter closes with a section on how the algorithm deals with multiclass problems.

    Reproducir Capítulo Ahora
  3. 3

    Polynomial Kernels

    Provides an introduction to polynomial kernels via a dataset that is radially separable (i.e. has a circular decision boundary). After demonstrating the inadequacy of linear kernels for this dataset, students will see how a simple transformation renders the problem linearly separable thus motivating an intuitive discussion of the kernel trick. Students will then apply the polynomial kernel to the dataset and tune the resulting classifier.

    Reproducir Capítulo Ahora
  4. 4

    Radial Basis Function Kernels

    Builds on the previous three chapters by introducing the highly flexible Radial Basis Function (RBF) kernel. Students will create a "complex" dataset that shows up the limitations of polynomial kernels. Then, following an intuitive motivation for the RBF kernel, students see how it addresses the shortcomings of the other kernels discussed in this course.

    Reproducir Capítulo Ahora
Empresas

Group¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.

En las siguientes pistas

Científico de machine learning in R

Ir a la pista

Aprendizaje automático supervisado en R

Ir a la pista

colaboradores

Collaborator's avatar
Chester Ismay
Collaborator's avatar
Becca Robins

requisitos previos

Introduction to R
Kailash Awati HeadshotKailash Awati

Senior Lecturer at University of Technology Sydney.

Ver Más

¿Qué tienen que decir otros alumnos?

¡Únete a 15 millones de estudiantes y empieza Support Vector Machines in R hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.